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A simple proof is pointed out for the asymptotic exponential decay of the n-step 
survival probability of a random walk on a finite lattice with traps in the limit 
as n ~ oo. Some bounds are mentioned, which are valid for finite n and for sym- 
metric random walks. 

In the preceeding paper Weiss, Havlin, and Bunde (1) consider the survival 
of a random walk on a finite lattice, with periodic boundary conditions, 
containing a trap. The initial position of the random walk is uniformly dis- 
tributed on the lattice. One of their results is the asymptotic exponential 
decay of the (average) n-step survival probability, which is denoted by 
(Un) ,  in the limit as n ~ oo. They further show that the exponent is the 
root of an equation involving the Green's function at the origin. At the end 
of their paper they write that they expect qualitatively similar results to 
hold also for lattices with more than one trap and with different boundary 
conditions. It is the aim of this short note to point out an elementary proof 
for the latter, to slightly refine the conclusions of the paper, and to mention 
a few useful bounds for (Un) ,  valid for finite n, for symmetric random 
walks. 

Consider a f inite set S of s points of which s - u are traps (0 < u < s), 
and a random walk (Markov chain) on S with stepping probabilities 
p ( l ~ l ' ) ,  l , l ' e S .  Let U c S  be the set of nontrapping points and p =  
[p(l--~ l ')]u, ~ u the u x u matrix of stepping probabilities in U. S, U, and p 
will be arbitrary. All that will be required to assume is that trapping is cer- 
tain, i.e., ( U  n) ~ 0 as n--, oo. This will amount to the assumption that 
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from each point of U there is a walk of positive probability leading to a 
trap. 

The probability ( U ~ )  may be written as 

1 
Un = -  (e, p%) (1) 

S 

where e is the u-vector with all elements equal to 1. Clearly, 
~ r ~ u p ( l ~ l ' ) < ~ l  for all I~U. Let p be irreducible. Because ( U n ) ~ 0 ,  
strict inequality must hold for at least one lE U. From the 
Perron-Frobenius theorem/2) it then follows that p has a real eigenvalue 
0<222< 1 with the following properties: (i) ]22[ ---< )-2 for any other eigen- 
value 2 of p, (ii) with 22 are associated strictly positive left and right eigen- 
vectors x 1 and Yl [which may be chosen such that (Xl, y l ) =  1]. The fact 
that 21 < 1 follows through (ii). When p is reducible, it may, through a per- 
mutation of its rows and columns, be written in the form 

P22 

where PH and P22 are square matrices and Pll is either zero or irreducible. 
A repetition of the argument shows that again the largest eigenvalue 221 is 
<1 since ( U n ) ~ 0 ,  but now 221 may be =0, in which case p is nilpotent. 

There are two possibilities for the asymptotic behaviour of ( U , ) :  

(I) 221=0: 3n' suchthat  (Un)=Oforn>~n' (2) 

(II) 221>0: lim l l o g ( U n ) = l o g 2 2 2  (3) 
n ~  n 

The proof is elementary. When p is irreducible it is known (see Ref. 2, 
p. 123) that, if m is the period of p, i.e., the number of eigenvalues with 
modulus 221, 

1 
n ~ co m k = O  ~ 2 f  : X 2 Y l  ( 4 )  

(p is aperiodic if m= 1). From (1), (4) and the monotonicity of (Un) ,  (3) 
immediately follows, for any m. When p is reducible, either p is nilpotent 
and (2) holds, or the largest eigenvalue 2 2 > 0 of some "irreducible block" 
dominates so that again (3) holds. 

(1) occurs if each point of U has the property that the walk cannot 
return without hitting a trap. An example is the one-sided nearest- 
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neighbour random walk on a ring of s points with one trap, where n ' =  
s -  1. (II) occurs whenever U contains at least one point to which return is 
possible. An example is the symmetric nearest-neighbour random walk 
(P61ya, or simple random walk) on the same ring; in this case 21 = cos(z/s) 
(see Ref. 3, p. 239). The existence of the limit in (3) is necessary for 
equation (14) in Ref. 1 to have a root. 

When p is symmetric [i.e., p(l-+l ' )=p(l ' -*l)  on U], 21 has, by 
Fischer's theorem,/4) the following representation: 

)~1 = sup (X, px)  (5) 
(x,x) = 1 

Diagonalization of (1) gives 
' i  

(U,,) = -  c~2 7 (6) 
S .  

where ,i~ are eigenvalues of p and c~ are constants with Zi  c2 = (e, e) = u. 
The following bounds are useful: 

(U, , )  ~<)J;(Uo) (7) 

(u.)>~((Uo)j (No> (8) 

(U.~)(U.~) < (U .~ ) (U . , )  (9) 

for nl +n4=n2+n3, nl and n 4 even, and n~ <~n2<~n3~n 4. 

(7) follows because Is ~< 21 for all i and (Uo)  = u/s. For a proof of (8) see 
Ref. 5. For n even (8) is easily seen to follow from Jensen's inequality, (4) 
since Ei c~27/Zic~>~ {Z,-c~2~}" by convexity. For n odd, however, a 
stronger argument is needed. For a proof of (9) see Ref. 6. (9) is shown by 
writing 

( U., ) ( U., ) - ( U.~ ) ( U.~ ) 

1 
--~2~2 E ('2e2(,~) ]nl~ n2 nl ~ n 2 - - n l ~ ( ) n 3  nl - L~ - , ~ j , - i , v ,  , ,~ ,  _ - J  , , . . ~  _ , t ;3 " 9  ( l o )  

1,J 

which is a sum of nonnegative terms. Note that ( U I ) / ( U o )  = (e, pe)/(e, e), 
which should be compared with (5). ( U , ) / ( U , _ I )  is not always 
monotonic in n. 

When p is asymmetric none of these bounds holds generally. The 
representation of 21 is in this case slightly more involved (see Ref. 4, p. 82). 

All the results mentioned follow from standard matrix algebra. Only 
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the finite size of S is relevant. When this is dropped the asymptotic decay of 
( U n )  is in general not exponential (the limits s ~ oe and n ~ oe may not 
be interchanged). 
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